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Motivation

 Cascading or simultaneous faults/events (multiple events) are 

common problems that may lead to large area blackout. (e.g., August 

2003 U.S. northeastern blackouts and the July 2012 India blackouts).

 No existing works can efficiently handle multiple event detection, 

especially for large scale power systems.
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Goals

 When, Where, What:

To detect, recognize and localize each single constituent event from 

multiple sources using data collected from the ultra-wide-area monitoring 

networks (e.g., FNET).
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Mixture (FDR reading)`
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Background: Mixture and Unmixing
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• Mixture cases
 The cocktail party problem (speaker identification), color unmixing …

Sources Mixtures Separated sources

Event Unmixing



Root Event Signatures
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Generator Trip

(GT) 

Line Trip

(LT)

Load Shedding

(LS)
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Frequency signals display similar patterns 

responding to different single events
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Frequency signals on several buses (plotted in 

different colors) responding to the same event
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Illustration of the nonlinear characteristic: (a) single event case: an LS occurred at 

the 1st sec; (b) single event case: an LT occurred at the 8th sec; (c) concatenated 

event with the same LS occurred at the 1st sec and the LT at the 8th sec
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Three cases with unbalanced events: (a) concatenated events with a small GT occurred at the 2nd

sec and a large LS at the 8th sec; (b) concatenated events with small GT at the 1st sec and large GT 

at the 8th sec; (c) concatenated events with a large GT at the 1st sec and a small LT at the 7th sec.



Challenges

• Single Event vs. Multiple Event
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Plots of 10 raw FDR signals without denoising Plots of 18 raw FDR signals without denoising 
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Rationale – Event Unmixing

• The key idea
 Linear mixture analysis has been widely used due to its effectiveness

and simplicity, where the sensor readout at a single location is given by

s = Da + n

s: an l-element column vector, the measured mixture or observation

D: an l ×c source matrix with each column indicating a root event signature

a: a c ×1 column vector (abundance vector), indicating the mixing coefficients 

satisfying certain constraints

n: the noise vector
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Algorithm – Sparse decomposition

Given s (mixture observations), D (dictionary/the signature matrix), how to 

solve the “a” ?

s = Da + n

 Traditional methods fail to solve the coefficient vector a, such as LS, UFCLS.

We propose the sparisty and non-negative constraints.
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Because only a few components/ 

signatures should be involved in a 

mixed signal, a should be sparse---

a few non-zero elements. l1-norm 

minimizes the number of non-zero 

elements in a.



The Whole Flow
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Dictionary Building

• Temporal localization: shift each root event
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Experimental Evaluation

• Simulated Event on NPCC testbed

 Triple event case
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S1C: single event cases

M2C: double event cases

M3C: triple event cases

DA: detection accuracy

FA: false alarm rate

PRR: root-pattern recognition rate

OTD: occurrence time delay

Ground truth: 

• LS (1sec)

• GT (7sec)

• LT (15sec)

Detection:

• LS (1.10sec)

• GT (7.29sec)

• LT (15.11sec)



• Real Event
 Two generator trips (event3 and event4) were successfully detected from 16 out of 18 FDRs and 

two line trips were successfully detected from 17 out of 18 FDRs.

 Each FDR detected the events with different time delay which can be further utilized for event 

spatial localization purpose.

Experimental Evaluation
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Event detection 

on FDR 14

Plots of 18 raw FDR signals 

without denoising. (Denoising is 

necessary before performing 

event detection algorithm!)

Each individual event is temporally 

localized on different FDRs! 
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Conclusion

• Sparse Decomposition

 A novel interpretation of the frequency signal in power grid

 Decomposition of linear mixture constrained by sparsity

• Multiple Event Detection

 Detection of cascading events with different types

 Temporal localization of events

• Test on Simulated and Real Cases

 High efficiency and accuracy
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