

Multiple Event Detection and Recognition through Sparse Decomposition

Yang Song, Zhifei Zhang, Wei Wang, Hairong Qi and Yilu Liu

University of Tennessee, Knoxville October 6, 2015

- Motivation and Goals
- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

Motivation and Goals

- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

Motivation

- Cascading or simultaneous faults/events (multiple events) are common problems that may lead to large area blackout. (e.g., August 2003 U.S. northeastern blackouts and the July 2012 India blackouts).
- No existing works can efficiently handle multiple event detection, especially for large scale power systems.

Goals

***** When, Where, What:

To *detect*, *recognize* and *localize* each single constituent event from multiple sources using data collected from the ultra-wide-area monitoring networks (e.g., FNET).

- Motivation and Goals
- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

Background: Mixture and Unmixing

Mixture cases

The cocktail party problem (speaker identification), color unmixing ...

Root Event Signatures

- Motivation and Goals
- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

- Oscillation
- Inter-class Similarity
- Intra-class Variance
- Nonlinear
- Unbalance

Frequency signals display similar patterns responding to different single events

- Oscillation
- Inter-class Similarity
- Intra-class Variance

Frequency signals on several buses (plotted in different colors) responding to the same event

- Oscillation
- Inter-class Similarity
- Intra-class Variance

Illustration of the nonlinear characteristic: (a) single event case: an LS occurred at the 1st sec; (b) single event case: an LT occurred at the 8th sec; (c) concatenated event with the same LS occurred at the 1st sec and the LT at the 8th sec

60.05

60

- Oscillation
- Inter-class Similarity
- Intra-class Variance

Times(300 samples for 30s)

60.2

60.15

(a) GT(2s) + LS(8s) (b) GT(1s) + GT(8s) (c) GT(1s) + LT(7s)

Times(300 samples for 30s)

50 100 150 200 250 300

60

59.95

59.9 59.85

59.8

59.75

50 100 150 200 250

Times(290 samples for 29s)

Three cases with unbalanced events: (a) concatenated events with a small GT occurred at the 2nd sec and a large LS at the 8th sec; (b) concatenated events with small GT at the 1st sec and large GT at the 8th sec; (c) concatenated events with a large GT at the 1st sec and a small LT at the 7th sec.

Single Event vs. Multiple Event

Plots of 10 raw FDR signals without denoising

Plots of 18 raw FDR signals without denoising

400

500

600

- Motivation and Goals
- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

Rationale – Event Unmixing

The key idea

Linear mixture analysis has been widely used due to its effectiveness and simplicity, where the sensor readout at a single location is given by

s = Da + n

- s: an *l*-element column vector, the measured mixture or observation D: an $l \times c$ source matrix with each column indicating a root event signature
- a: a $c \times 1$ column vector (**abundance vector**), indicating the mixing coefficients satisfying certain constraints
- **n**: the noise vector

Algorithm – Sparse decomposition

Given s (mixture observations), D (dictionary/the signature matrix), how to solve the "a" ?

s = Da + n

Traditional methods fail to solve the coefficient vector a, such as LS, UFCLS.
We propose the sparisty and non-negative constraints.

$$\arg\min_{\mathbf{a}} \left\{ \|\mathbf{s} - D\mathbf{a}\|^2 + \lambda \|\mathbf{a}\|_1 \right\}$$

s.t. $\mathbf{a} \succeq 0$

Because only a few components/ signatures should be involved in a mixed signal, **a** should be sparse---a few non-zero elements. l_1 -norm minimizes the number of non-zero elements in **a**.

The Whole Flow

Dictionary Building

Temporal localization: shift each root event

- Motivation and Goals
- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

Experimental Evaluation

Simulated Event on NPCC testbed

Triple event case

	Number of tests	DA (%)	FA (%)	RPR (%)	OTD (s)
S1C	144	100	0	100	0.123
M2C	115	95.65	2.17	98.64	0.193
M3C	138	91.55	0.97	98.15	0.202

Ground truth:

- LS (1sec)
- GT (7sec)
- LT (15sec)

Detection:

- LS (1.10sec)
- GT (7.29sec)
- LT (15.11sec)

S1C: single event cases M2C: double event cases M3C: triple event cases

DA: detection accuracy FA: false alarm rate PRR: root-pattern recognition rate OTD: occurrence time delay

Experimental Evaluation

Real Event

- Two generator trips (event3 and event4) were successfully detected from 16 out of 18 FDRs and two line trips were successfully detected from 17 out of 18 FDRs.
- ***** Each FDR detected the events with different time delay which can be further utilized for event spatial localization purpose.

Each individual event is temporally localized on different FDRs!

FDR	1	2	3	4	5	6
GenTrip3	5.4s		4.0s	7.0s	5.2s	4.6s
GenTrip6	6.2s	4.2s	3.2s	7.6s	4.6s	4.2s
LineTrip8	9.2s	7.2s	7.8s	7.6s	9.0s	6.2s
LineTrip12	7.2s	6.2s		5.6s	6.4s	7.4s
FDR	7	8	9	10	11	12
GenTrip3	4.4s	4.0s	4.6s	4.2s	4.0s	4.2s
GenTrip6	6.4s	3.8s	6.8s	4.0s	6.0s	5.4s
LineTrip8	6.8s	5.6s	8.6s	6.0s	6.6s	8.6s
LineTrip12	7.2s	5.8s	7.2s	6.0s	6.6s	7.2s
FDR	13	14	15	16	17	18
GenTrip3	5.0s	5.6s	4.2s		3.6s	4.4s
GenTrip6	4.2s	7.0s	3.8s	4.4s	3.2s	7.8s
LineTrip8	9.0s	7.4s	6.8s	7.6s	7.8s	6.2s
LineTrip12	7.0s	8.0s	7.2s	7.4s	5.8s	6.4s

- Motivation and Goals
- Background
- Challenges
- Sparse Decomposition
- Experimental Evaluation
- Conclusion

Conclusion

Sparse Decomposition

- * A novel interpretation of the frequency signal in power grid
- * Decomposition of linear mixture constrained by sparsity

Multiple Event Detection

- * Detection of cascading events with different types
- Temporal localization of events

Test on Simulated and Real Cases

* High efficiency and accuracy

Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

